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Grid turbulence at large Reynolds numberst 

By A. L. KISTLER AND T. VREBALOVICH 
Jet  Propulsion Laboratory, Pasadena, California 

(Received 24 November 1965) 

Measurements of grid turbulence have been obtained for grid Reynolds numbers 
ranging from 2.4 x lo6 to 1.2 x lo5. The decay law and the effect of Reynoldsnumber 
on the turbulence level are established. The measured power spectra of the turbu- 
lence are consistent with Kolmogoroff scaling for kq > 0.1 (k is the wave-number 
and q is the Kolmogoroff length); but for kq < 0.1, the spectra of the stream-wise 
turbulence velocity component and of the cross-stream component do not appear 
to be isotropically related. However, the stream-wise spectrum does display a 
- $ region, which increases in extent with increasing Reynolds number. 

1. Introduction 
The turbulent flow downstream of a grid of moderate solidity placed perpendicular 

to a uniform stream has two features which make it particularly useful for the study 
of turbulence structure. 

The first is that this flow field consists of the collection of wakes behind the 
obstacles comprising the grid. Sufficiently far downstream, these wakes coalesce, 
and the turbulence has statistical properties that are approximately uniform in 
a plane perpendicular to the stream direction (parallel to the grid). As a consequence, 
the change in the average properties of the turbulence with distance from the grid 
is controlled primarily by dissipation, and the rate of dissipation can be easily 
obtained by measuring the change in the level of the turbulent fluctuationas 
a function of distance from the grid. The pressure-velocity work, the other term 
appearing in the energy equation, is believed to be negligible for the small turbulence 
levels encountered in these flows. 

The second important feature of this flow is that measurements of the fluctuation 
velocity as a function of time at  a fixed point in space can be related to the spatial 
structure of the turbulence with good accuracy through the relation Ax = U,At 
(Fame, Gaviglio & Dumas 1953), where x is the stream-wise length co-ordinate, 
t the time, and U, the mean stream velocity. This relation, which implies that the 
pattern of disturbance in the flow (eddies) is carried along with the local mean 
velocity, is a good approximation when the mean velocity does not change appreci- 
ably over distances comparable to the scale of the turbulence, and when the 
turbulence level is small. Grid turbulence satisfies both requirements. 

During the last few days in the life of the Southern California Co-operative Wind 

This paper presents the results of one phase of research carried out a t  the Je t  
Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, 
sponsored by the National Aeronautics and Space Administration. 



38 

Tunnel (CWT), these features of grid turbulence were used to examine the range of 
usefulness of Kolmogoroff 'stheories of thestructure of turbulence a t  larger Reynold's 
numbers. The theories deal with the small-scale components of the turbulent 
motion, a region most easily examined through spectral measurements in conjunc- 
tion with a space-time transformation. 

The CWT was a large tunnel which could be operated a t  high speeds and high 
densities so that grid turbulence could be generated at reasonably large Reynolds 
numbers. The Reynolds number could be varied by changing the density alone, so 
that one could obtain the effect of Reynolds-number change on the data without 
modifying the grid size or the space-time transformation. This possibility simplified 
spectral measurements, since the frequency range of the measurements does not 
change drastically when the Reynolds number is changed. 

Because the data were taken shortly before the CWT ceased operation, time was 
limited and there was no possibility of checking measurements to clarify any 
unusual features that emerged in the analysis of the data. For this reason, only a few 
ofthese results were reported earlierin a brief abstract (Kistler & Vrebalovich 1961). 
Since that time, other work on grid turbulence has given evidence in their support, 
and it is felt that publication of the complete results is warranted. 

A .  L. Kistler and T .  Vrebalovich 

2. Experimental equipment 
The Co-operative Wind Tunnel was a closed-circuit facility with a working section 

8.5 x ll-5ft. in cross-section and a uniform mean flow over a length of 35ft. The 
temperature rise produced by the fans which drive the stream is removed by 
a water-cooled heat exchanger spanning the settling chamber. This cooling system 
introduces a temperature non-uniformity into the flow. Hot-wire measurements of 
the combined temperature and velocity fluctuations in the working section without 
the grid showed, however, that these fluctuations correspond, in terms of hot-wire 
signal, to a velocity-fluctuation level of less than 0-1 %. 

A bi-plane, square-mesh grid made of 1-25 in.-diameter pipe, spaced 6.75 in. from 
centre to centre, was installed normal to the stream direction a t  the upstream end 
of the working section. The grid solidity was 0.335. The hot-wire for measuring the 
fluctuations and a, Pitot tube for measuring the dynamic pressure were mounted 
near the tunnel centre-line on a traversing mechanism. This traverse could move 
the measuring probes 5ft. along the centre-line as well as 6in. normal to the stream 
direction. The traverse could rotate a hot-wire probe in the horizontal plane to 
permit direct calibration of a hot-wire for measuring v' , the cross-stream component 
of the turbulence. 

The hot wires were 0.00005 in.-diameter, 90 '$(, platinum-10 yo rhodium wires of 
0.014in. length. A single wire normal to the stream was used to measure u', the 
stream-wise turbulence component, and two wires in an 'X' configuration with an 
included angle of about 75" were used to measure v'. The constant-current hot-wire 
sett  had a compensated frequency response up to 100 kcycles for the time constants 
encountered. The capacity of the 170ft. cable connecting the hot wires to the 
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amplifier, in conjunction with the hot-wire resistance, produced no significant 
attenuation to the signal below 500 kcycles. 

The power spectra of the hot-wire signals were obtained with a Hewlett-Packard 
300 A wave analyser for the frequency range from 20 cycles/sec to 16 kcycles, and 
with a Sierra 121 wave analyser for the frequency range from 15 to 100kcycles. 
Both analysers use the heterodyne principle and have constant bandwidth. The 
Hewlett-Packard analyser output contains not only the energy in the neighbour- 
hood of the passband, but also the energy in the neighbourhood of 20kcycles. 
A filter was used to suppress the 20 kcycle component, and the data were corrected 
for the filter characteristics. 

3. Test conditions and calibration 
A11 measurements were made near room temperature and at a free-stream velocity 

of 200ft./sec. This was near the highest veloci.ty that could be used without intro- 
ducing significant compressibility effects in the flow over the grid. The grid Reynolds 
number was varied by changing the pressure level of the tunnel. The available 
pressure range from 0-2 to 4 atm. corresponded to a range of grid Reynolds number 
Re, from 1.2 x 105 to 2.4 x lo6, where Re, = U, Mlv, M is the bar spacing, and 
v the kinematic viscosity. 

The hot wires were calibrated in the tunnel. Those normal to the stream, used for 
measuring the stream-wise component of the velocity fluctuations, were calibrated 
by setting the wire operating conditions a t  U, = 200ft.lsec and then changing 
U, over a small range and measuring Ae/Au, where e is the mean voltage across the 
wire. With this calibration method, it is not necessary to assume a particular form 
for the heat-loss laws from fine wires, but the velocity increments must be measured 
accurately. At  high pressures, the velocity increment could be measured without 
difficulty, but for pressures below 1 atm., the pressure transducers had insufficient 
resolution to determine U, with the necessary accuracy. For these low pressures, the 
calibration curve of tunnel fan-blade angle versus mean velocity was assumed to be 
the same as for high pressures, and the velocity was determined from the blade angle. 

The ‘X’ meters for measuring v‘ were calibrated by rotating the probes in the 
stream and measuring their angle sensitivity. When the ‘X’ meters were aligned 
with the flow, they had negligible u‘ sensitivity. 

4. Measurement errors 
In  these tests, measurements were made of the turbulent fluctuation levels and 

of the shapes of the spectra. The accuracy of the fluctuation levels was almost 
wholly determined by the accuracy of the wire calibration, since the wires were 
much shorter than the scales of the energy-containing eddies. The wire calibrations 
are estimated to be within 10 % of the true value for both u‘ and v’, with the highest 
accuracy at the high pressure levels. 

For the low-level turbulence encountered here, the main errors in the measure- 
ments of the spectral shapes are caused by the effects of finite wire length 1 and by 
errors in setting the time constants r of the wires. A finite-length hot wire averages 
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the large wave-number components over the wire length, and the contribution of 
these components to the output voltage is attenuated with respect to the contribu- 
tion of the small wave-number components. This effect has been calculated for 
isotropic turbulence (Uberoi & KovAsznay 1953); the correction to the measured 
spectrum at a point requires a knowledge of the true spectral shape from this point 
to k = co, where k is the wave-number of a spectral component. The best that can 
usually be done is to place a bound on the correction. If the spectrum has a mono- 
tonically decreasing logarithmic slope, the effect of the correction is always to 
decrease this slope. The correction is a function of kl; for the wire length used in 
these tests, no significant effect is indicated for k < 28/cm. The reported data are 
not corrected for wire length, since k = 28/cm was beyond the region of primary 
interest in all the measurements. 

An error in time-constant setting can occur when the square-wave technique is 
used in a region of large velocity fluctuations. If E( f )  is the true one-dimensional 
frequency spectrum (f is the frequency), r the true wire time constant, and ra the 
time constant used, the measured power spectrum E,,(f) will be 
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over the frequency range where the compensation is effective. For f < 1/r, l/ra, the 
measured spectrum is equal to the true spectrum. For f $- 117, l/ra, the measured 
spectrum has the same shape as the true spectrum, but the amplitudes differ by 
a factor of ( r , / ~ ) ~ .  In  the intermediate region, both the shape and the level are 
affected. 

In  the reasonably low turbulence levels encountered in these tests, the time 
constant could be set within a few per cent, so that no large error in the slopes or 
levels is expectedfrom this source. The time constants were approximately 0.1 msec, 
so that 27rrf = 1 at f = 1.6 kcycles, or at  about L = 27rf/& = 1.6 em-1. This wave- 
number is well below that at which the spectral shape is of particular interest. 

5. Fluctuation levels and energy decay 
Measurements of the variation of turbulent energy with distance from the grid 

were obtained for the maximum pressure flow. Insufficient time was available to 
make suchmeasurements for other conditions. The results obtained at  the maximum 
Reynolds number were similar to those expected at much smaller Reynolds 
numbers, indicating that the decay law probably does not change over the range of 
Reynolds numbers considered here. 

The determination of the dissipation rate B required the differentiation of the 
function relating the turbulent energy to the distance from the grid, 

where C, v" and tZ are the root-mean-square of the three normal fluctuation com- 
ponents u', v f  and w I .  
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The symmetry of the flow imposes the requirement that the two cross-stream 
turbulence components have equal mean-square values (g2 = G2).  Therefore, 

and the energy per unit mass is 1/2(.ii2 + 2G2). This differentiation is carried out by 
determining an average curve through the experimental points and then differ- 
entiating the curve. For a limited range near the grid (10 < x / M  < loo), it is 
customary to use the initial period relations 

to fair the data. The data plotted in this fashion are shown in figure 1. The effective 
origins, x,, and xl, for U' and v' are different but are within the range expected from 
previous measurements at  much smaller Reynolds numbers. The measurements 
give the usual result that .ii > v", and consequently the turbulence does not satisfy 
the condition of isotropy. 
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F I G ~ E  1. The turbulent energy as a function of distance from the grid. The straight lines 
were used to compute the dissipation rate. 0, (Uo/G)z; x , (Uo/C)z. 

The form of the decay law is given by the above relation to a reasonable degree of 
approximation, but the values of A and B in equations (1) and (2) change with the 
pressure drop across the grid. The power used in pushing the air through the grid 
appears both as turbulence and as internal energy; if the ratio of the energy going 
to each energy sink is not sensitive to Reynolds number, then A and B would be 
expected to be proportional to l/C,. Measurements of .ii and 6 as a function of 
Reynolds number were obtained at  x / M  = 45 and are shown in figure 2 along with 
the measured pressure-drop coefficient of the grid. The available Reynolds-number 
range was large enough to span the critical Reynolds number for the grid bars, as 
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is shown by the drop in the measured C, somewhere between Re,, = 0.7 x 106 and 
1-25 x 106. Both .ii and v" reflect this change in C,, but .ii remains larger than v" for the 
entire range of Re,. 

A .  L. Kistler and T .  Vrebalovich 
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FIGURE 2. The effect of Reynolds number on the grid pressure drop and on the turbulence 
level at z/M = 45, where Re, = UOM/Y. 0, Zi/U,,; A, 6/Uo; 0, C ,  = 2Ap/pU;. 
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,quo 6/U,  
v(cm'/sec) (yo) (yo) e(cms/secs) L(cm) V-l(l/cm) ReL=CL/v 

4.31 x 1.97 1.60 1.62 x lo5 4.78 2.12 x 10' 1.33 x lo4 
8.33 x 2.16 1-67 1-84 x 106 4.78 1-34 x 10' 7-5  x lo3  
1.57 x 10-1 2.80 2.1 3.02 x lo5  6.0 9.38 x 10' 6.53 x lo3  
7.6 x 10-1 3.05 2.17 3.38 x l o 5  6.28 2.96 x 10' 1 . 5 4 ~  l o 3  
1 . 5 ~  10-l 2.84 - 2.04 x lo5 5.5 8.8 x 10' 3.2 x lo3 

TABLE 1. Mean properties of the flow a t  x /M = 45, 
Uo = 6100 cmisec, M = 17.15 cm 

If these data are used to evaluate Cp A ,  a value of about 25 is obtained. The 
turbulent energy at  x /M = 45 remains about the same fraction of the expended 
power on both sides of the critical Reynolds number; namely, about 1 %. 

The measured levels and assumed decay law were used to evaluate the dissipation 
rate at  xilw = 45, the location at which the spectra were measured. Table 1 shows 
the values of the important parameters evaluated at  that point for the various 
conditions investigated. 
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6. Spectra 
The power spectra of the hot-wire signals were obtained at x /M = 45, where the 

turbulence length scales were such that the interesting portions of the spectra were 
within the frequency range of the hot-wire equipment for the complete range of 
pressure levels. The time spectra of the hot-wire signals were converted to space 
spectra of the turbulent velocity components by using the wire calibration and the 
transformation k = 2nflq. 

At least two length scales are needed to characterize the nature of the turbulence; 
the most meaningful scales for spectra are the outer scale and the Kolmogoroff 
length. The outer scale is comparable to the scale of the turbulence-producing 
object (mesh or bar size in our case); the Kolmogoroff length is given by the dissipa- 
tion rate and the viscosity, and it depends on the Reynolds number of the turbulence 
as well as the scale of the turbulence-producing object. The outer scale most com- 
monly used for describing grid turbulence, and the one which can be obtained from 
the measured spectrum itself, is the integral scale. This scale is defined by 

.iiZL = J(u'(x)u'(x+r))dr 

(where the symbol ( )indicates time average) and, with the space-time transforma- 
tion, is given by L = n/2E,(O), where E, is the area-normalized one-dimensional 
spectrum of u', i.e. 

E,(k)dk = 1. 

E,( k) will be the area-normalized one-dimensional spectrum of v'. 
The measured spectra are shown in figure 3. Plotting E(k)/Lvs. kL with linear 

scales emphasizes the small wave-number end of the spectra. The u' spectra are 
forced to go through the point E,(O)/L = 2/77 by the method of computing L. If the 
turbulence were isotropic, the v' spectra should have an intercept at one-half this 
value, and this is seen to be approximately true. From previous work on grid 
turbulence, it is known that the similarity displayed by the u' and the v' spectra, 
respectively, is a consequence of the fact that the same grid was used in all cases. 
A different grid or another turbulent flow would not, in general, produce spectra 
with the same shape at low wave-numbers. 

The Kolmogoroff theory states that if the Reynolds number is sufficiently large 
so that the outer length scale of the turbulence is significantly larger than the inner 
scale, then the turbulent energy associated with the high wave-number region of the 
spectra should be isotropically distributed in space. In  proper co-ordinates, the 
spectrum in this region should be a universal function for all turbulent flows. 
Kolmogoroff also proposed that for sufficiently large Reynolds numbers, a spectral 
region would exist that was still isotropic, but where the spectral shape depended 
only on 6 and not on Y. This inertial subrange would have a spectral shape E N k-g. 
Using the dissipation rate computed from the decay data, the Kolmogoroff length 
7 = (v3/le)% and the Kolmogoroff energy-spectrum scale E, = (ev5)* were calculated. 
The measured u' spectra are plotted in figure 4 in co-ordinates made non-dimen- 
sional with these factors. A log-log plot is used, since the interesting region is a t  
large wave numbers, where the energy is small and the spectra decrease rapidly with 
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increasing wave-number. A spectrum measured in a pipe is also shown in figure 4. 
The dissipation was measured for this spectrum so that 7 and E,, could be computed. 

The qualitative changes of the spectral shape with Re, and k are as expected. 
For ky > 0.1, all of the spectra seem to have the same shape. The extent of the region 
where El N k-* ( k ~  < 0.1) increases with increasing Reynolds number. For the 
smallest k, the spectra appear to approach a horizontal asymptote. 

A. L. Kistler and T. Vrebalovich 
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FIGURE 3. The small wave-number portion of the spectra. Both El  and E,  have unit area 
on this plot. E d k )  E,(k) Re, 
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The value of the k = 0 asymptote can be estimated as follows. For turbulent flow-s 
in geometrically similar boundaries and in which the dimensionless outer scale and 
fluctuation levels do not change with Reynolds number, a well-known argument 
shows that the dissipation rate is given by E = D.ii3/L, where D is independent of the 
Reynolds number and 4 and L are the stream-wise fluctuation level and integral 
scale, respectively. The grid turbulence examined here approximately satisfies this 
relation, even though both 4 and L change with Re,. This is the case because with 
G/V, N C$, and with the form of the decay law independent of Re,, Dwill be constant 
if L N Ck, a relationship that approximates the measurement here. With E related 
to L in this manner, the k = 0 intercept of El on a spectral plot in Kolmogoroff 
variables is (2/nDi) Rei. These intercepts are shown in figure 4 with D = 0.4. This 
value of D would, of course, be different if some other measure of the fluctuation 
level were used-e.g. [(C2 + 2E2)/3]4. The same remark applies to the value of Re,. 

Isotropy implies a definite relation between the u' and v' spectra. For regions of 
the spectra in which a power law is a good approximation to the shape, this relation 
is particularly simple; i.e. if El N k-", then E, = [&( 1 + n)] El. When the u' spectra 
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on the log plot are approximated by the straight-line segments shown and the 
results are transferred over to E,, the straight lines indicated on figure 5 are obtained. 

The measured points of E, are too scattered to permit anything more than 
qualitative statements to be made about the relationship between El and E,. For 
kv > 0-03 (approximately), the data are not inconsistent with the prediction of 
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FIGURE 4. The spectra of the stream-wise component of the velocity fluctuation. The solid 
symbols and dashed line near Icy = 0.01 are computed from the realtion e = DG33/L, with 
D = 0.4, and are the estimated k = 0 value for the spectra. 0,  Re, = 1.3 x lo4; 
A, Re, = 7.5 x lo3; x , Re, = 6.5 x lo3; 0, 1.5 x lo3; v, 3-2 x lo3 [Laufer 1954 (pipe)]. 

isotropy; that is, no systematic change of the data with Reynolds number is 
apparent, and the predictions from El are possible average curves through the E ,  
data. For ky < 0.03, however, the E, data definitely lie below the isotropic pre- 
diction. No extensive interval of constant slope is present in the E, data, so that it 
is impossible to ascribe any particular power law to the data in this region. 



46 A .  L. Kistler and T. Vrebalovich 

1 Oh 

105 

104 

103 

s h 

5 102 

5 
1 3  

10' 

0 

lo- '  

10-2 

I I-- 

10-4 10-3 lo-' l o - '  0 

lcll 

FIGURE 5 .  The spectra of the cross-stream component of the velocity fluctuation. The two 
lines, k-% and k-4, are related to the lines in figure 4 by the isotropic relationship. Symbols 
as in figure 4. 

7. Conclusions 
The data presented here allow conclusions to be drawn on two aspects of grid 

turbulence: (1) the general features of this turbulence as determined by the large- 
scale components of the turbulent motion, and (2) the features of the small-scale 
components of the motion at  high Reynolds numbers. 

Grid turbulence has been studied extensively at low Reynolds numbers because 
it is the closest realization of isotropic turbulence. The data described here show that 
the main features of this turbulence change with Reynolds number only in so far as 
the flow over the grid does so; i.e. the turbulent energy is proportional to the pressure 
drop across the grid. The decay data can be fitted with an initial-period decay law 
(C N l/x); 72, is greater than 5 for the entire Re, range; and the spectral shapes at 
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small wave number are independent of Reynolds number. Apparently no new 
phenomena come into play at large Reynolds numbers, and data taken at much 
lower Reynolds numbers adequately describe the main features of the flow. 

The conclusions that can be drawn from the data obtained to examine 
Kolmogoroffs theory are not as definite as one would wish. Scales determined from 
the dissipation rate and the viscosity bring together the large wave-number data for 
the various Reynolds numbers. The relation between the u' and v' spectra seems to 
satisfy the condition for isotropy at sufficiently large wave numbers (ky > 0.1). 
For smaller wave numbers, in the so-called inertial subrange, the relation between 
the two sets of spectra is not, however, as expected. The u' spectra have the pre- 
dicted shape, but the v' spectra are not related to the u' spectra through the isotropic 
relation, and the shape of the v' spectraisnot the expected k-8. The same discrepancy 
is shown in the data of Laufer (1954) for a pipe flow (included in figure 4) and of 
Klebanoff (1955) in a boundary layer. Since this discrepancy does not change with 
Reynolds number, i.e. the region where isotropy prevails does not get larger with 
increasing Reynolds number, it is unlikely that the discrepancy can be ascribed to 
excessively small Reynolds numbers. Considering that others (e.g. Gibson 1963; 
Grant &; Moilliet 1962) have obtained isotropy in this region for different kinds of 
flows at  comparable Reynolds numbers, it is more probable that the Kolmogoroff 
theory concerning the inertial subrange does not apply equally to all flows but 
depends on the particular mechanism which produced the turbulence. Kolmogoroff 
himself suggested a modification of the theory that makes the results dependent on 
the distribution of dissipation in the particular flow. Unfortunately, the above data 
cannot be used to resolve this question. 

The u' spectra obtained here can be used to estimate the minimum Reynolds 
number, at  which an inertial subrange might be expected. If one employs the 
criterion that the spectral curve should follow along the - Q  slope for at  least 
a factor of two in energy, then a value of (Re,),, = 300 is obtained. 
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